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Abstract. Continuous Query Decomposition (CQD) is a framework for
answering complex logical queries on incomplete knowledge graphs. The
atomic propositions in these logical queries correspond to the presence or
absence of triples in the knowledge graph, and their truth value is calcu-
lated as a probability using a pre-trained link predictor. The total query
score is calculated with fuzzy logic equivalents of logical conjunction
and disjunction. CQD is able to answer multi-hop queries that require
projecting the value of one or more variable nodes. Two methods are pro-
posed to optimize the embedding of the variable node(s) such that the
query score is maximized. One of the potential applications of Complex
Query Answering is drug development. In this paper, CQD is tested on
the biomedical knowledge graph BioKG and the results are shown and
evaluated. The results are promising, but should be interpreted with cau-
tion as the link predictor achieved much higher accuracy than what was
reported in a different paper with the same model and dataset.

Keywords: Query answering · Knowledge graphs · Knowledge graph
embedding

1 Introduction

A knowledge graph (KGs) is a data model that stores information as a directed,
labeled, multi-relational graph consisting of interconnected entities connected
by relations. The basic building block of knowledge graphs is the triple, which
has the form (head entity, relation, tail entity). Triples indicate that two en-
tities are connected by a relation, thus denoting a fact. For example (Rome,
capital of, Italy). Knowledge Graphs are very flexible and effective at storing
structured knowledge about different domains, ranging from general-purpose
KGs like FB15k [3] and NELL995 [5] to domain-specific ones such as BioKG [2],
which is used in the biomedical domain for drug discovery, drug repurposing,
and other tasks.

By means of knowledge graph embedding, it is possible to learn a dense,
low-dimensional vector representation of KG entities and relations which retains
information about the structure and/or semantics of the components. This vector
representation is in a form that can be used in downstream machine learning
tasks, such as link prediction (predicting whether two entities are connected by
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a relation) and query answering (answering complex logical queries on KGs with
multiple atoms). [11] [12]

Drug development and research is costly and time-consuming. Getting a drug
to market takes upwards of 15 years and costs around 2 billion USD [20]. The
majority of drugs never make it through the complex and highly regulated drug
development pipeline to market. Various computational approaches are being
investigated, including relational machine learning, to improve the success rate
of the drug discovery process. In 2011, AstraZeneca revised its RD process to
include, among other things, a greater emphasis on computational methods like
high throughput screening and virtual screening in the early lead generation
stage. From 2005-2010, before the introduction of AstraZeneca’s new framework,
only 23% of new drug target discovery projects delivered leads of sufficient qual-
ity to move on to the next stage of testing, and the overall success rate from drug
discovery to phase III completion was 4%. After implementing the new frame-
work, from 2012-2016, those figures increased to 48% and 19%, respectively. [19]

Relational learning on KGs is a promising new research field that seems to be
well-suited for biomedical applications. It may be applied in the pharmaceutical
industry to a variety of tasks including drug- discovery, repurposing, interaction
screening and toxicity screening [2] [21]. There is an ever increasing amount of
structured data in this domain so the central question becomes how to derive
insights from the data. There are many properties of KGs and relational learning
that make them suited for this task. KGs are capable of storing heterogenous
data (i.e. multiple entity types and multiple relation types), whereas traditional
graphs used before were homogenous [20]. So, while the graphs used before might
only contain information about proteins, KGs can store information about pro-
teins, genes, drugs, diseases, etc. in one database, thereby making it possible to
model complex biological systems. Given a biomedical KG, many problems can
be framed as a link prediction problem. For example, drug interaction screening
can be done by predicting links between drug entities (drug-drug interactions)
and drug target identification can be done by predicting links between drug
entities and protein entities. Complex query answering goes a step further by
finding connections between nodes separated by more than one edge, and as a
result could unlock exponentially more information from the same model.

Recently a framework named Continuous Query Decomposition (CQD) [1]
has been proposed for answering complex queries on incomplete Knowledge
graphs. Only training the model on link prediction, it demonstrated the abil-
ity to answer logical queries using conjunction (∧), disjunction (∨), and the
existential quantifier (∃) with state-of-the-art accuracy.

The purpose of this paper is to experiment with CQD on the biomedical
knowledge graph BioKG and report the results. In the original paper, the per-
formance of CQD was evaluated on three common benchmark KGs with general
information, namely FB15k [3], FB15k-237 [4], and NELL995 [5]. It is not yet
known how CQD will perform in the biomedical domain, specifically on the
BioKG dataset. Typical benchmark KGs may not reflect the domain-specific
properties of biomedical KGs, as there are some fundamental differences between
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them. Biomedical knowledge graphs tend to be larger, display higher average
connectivity [9], and contain richly structured ontological hierarchies [7].

2 Background

2.1 Knowledge Graphs

A knowledge graph G ⊆ E × R × E is a set of triples (h, r, t) ∈ F denoting
a relationship between the head and tail entities h, t ∈ E of relationship type
r ∈ R, with E and R representing the set of all entities and relationship types,
respectively.

2.2 Knowledge graph embedding

Knowledge graph embedding (KGE) is the machine learning task of embedding
components of the KG (entities and relations) into a low dimensional vector
space which encodes information about the components. KG embedding usually
consists of three steps: (i) representing entities and relations (usually as a vector),
(ii) defining a scoring function to calculate the plausibility of some fact (h, r, t),
and (iii) learning entity and relation embeddings by optimizing the embedding
such that the plausibility of observed facts is maximized and (optionally) the
plausibility of some generated negative samples is minimized. [11]

KGE techniques are roughly categorized into translational distance mod-
els, which use distance-based scoring functions, and semantic matching models,
which use similarity-based scoring functions. The KGE model used in this pa-
per is called ComplEx and is of the latter type. In this section, ComplEx is
explained by first introducing RESCAL and then which modifications ComplEx
has compared to RESCAL.

Notation

– G A knowledge graph

– E The set of entities

– R The set of relations

– Ne Number of entities in the knowledge graph

– Nr Number of relations in the knowledge graph

– He Dimension size of entity/relation embedding

– h, r, t - Head entity, relation, tail entity

– ex - Embedding of entity x

– rx - Embedding of relation x

– ϕ(eh, rret) - Score function of triple ⟨h, r, t⟩
– X ∈ {0, 1}Ne×Ne×Ne - Adjacency tensor representing a knowledge graph.

The entry xijk = 1 if the triple ⟨ei, rk, ej⟩ exists, and xijk = 0 otherwise.
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Semantic matching models RESCAL is a semantic matching model and the
first modern KGE approach. [13] It it still the foundation of later models in the
same category, such as DistMult and ComplEx. The RESCAL score function in
compact matrix notation is Fk = EWkE

T , where E ∈ RNe×He is a matrix of
entity embeddings, Wk ∈ RHe×He is the k-th slice of the weight matrix W, i.e.
the weights associated with the k-th relation, and Fk ∈ RNe×Ne is the k-th slice
of the matrix holding the scores for all the triples. F and X, the adjacency tensor
representation of the KG, have the same dimension size Ne×Ne×Nr, and while
the entry xijk holds the truth value of whether the triple ⟨ei, rk, ej⟩ exists, the
entry fijk holds the score of the triple xijk. The goal is to jointly optimize the
entity embeddings E and weight matrix Wk by minimizing the loss of F against
X. The weight matrix specifies at entry wabk how much the latent features a and
b interact in the k-th relation. The scores are calculated as the weighted sum of
every pair of entities and every pair of latent features associated with the k-th
relation (i.e. every entry in the weight matrix at the k-th slice). [11]

DistMult is a simplification of RESCAL which restricts Wk to diagonal ma-
trices, but it is only able to model symmetric relationships. [11]

ComplEx extends DistMult by introducing complex valued representations
for entities and relationships. The embeddings are represented as vectors e, r ∈
CHe and the score of a triple (h, r, t) is defined as

ϕ(eh, rr, et) = Re(e⊤h diag(rr)et) = Re(

d−1∑
i=0

[rr]i · [eh]i · [et]i) (1)

where et is the complex conjugate of et and Re(ex) denotes the real part
of the complex valued vector ex. ComplEx is able to model symmetric and
antisymmetric relations. [8]

2.3 Link Prediction

Link prediction is the task of predicting missing relations in a knowledge graph.
Given a triple with one entity missing, the task is to predict the missing en-
tity, denoted (?, r, t) for head prediction and (h, r, ?) for tail prediction.
Every candidate entity is scored by a differentiable function which takes as
its arguments embeddings of a head entity, relation, and tail entity and re-
turns the plausibility that those the entities are connected by that relation. I.e.
ϕ(eh, rr, et) : RHe × RHe × RHe → [0, 1]

Link prediction is often necessary because of the incompleteness of virtually
all KGs, so subgraph matching with e.g. the SPARQL querying language cannot
be relied upon.

Link prediction based on KG embeddings have achieved strong results on
benchmarks in recent years [17]. KGs contain patterns of connections which are
encoded in the embeddings thereby enabling link prediction. Semantic matching
models encode semantic information about entities by the principle that entities
tend to be related to entities with similar characteristics (i.e. connected to similar
entities via similar relations). [11]
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3 Complex Query Decomposition

The CQD framework enables answering queries on KGs, provided that the
queries are expressed as an Existential Positive First-Order (EPFO) logical query
and the atomic propositions denote the presence (true) or absence (false) of a
triple in the KG. The class of EPFO logical formulas includes those that may
use the operators conjunction (∧), disjunction (∨), and the existential quantifier
(∃). The atomic propositions are represented with an atomic formula p(s, o),
with p ∈ R a binary predicate and s, o ∈ E its arguments. The formula is true if
the triple ⟨s, p, o⟩ exists in the KG. (s, p, and o stand for subject, predicate and
object).

CQD can in principle generalize to any EPFO query whose dependency graph
is directed and acyclic, but a selection of nine structures have been evaluated. In
this paper four query structures will be tested, which only include conjunction
and the existential quantifier, not disjunction.

So a query like ”Which drug D targets protein P associated with genetic dis-
order Cystic Fibrosis?” can be expressed as ?D : ∃P.assoc(Cystic Fibrosis, P )∧
target of(P,D). ”Which protein interacts with insulin and is associated with
diabetes?” can be expressed as ?P : ∃P.ppi(P, insulin) ∧ assoc(P,diabetes) (ppi
stands for protein-protein interaction). The former has a query structure denoted
2-hop or 2p because it involves double link prediction and projecting the value
of the bound variable node, and the latter is called 2i because it involves an
intersection where two atoms have the same object. These two query types, as
well as 1p (one-hop link prediction) and ip (intersection followed by projection)
will be experimented with in this paper. See figure 1 for an illustration of the
different query structures.

Fig. 1: Illustration of the query types included in experiments

3.1 Conjunctive Queries

The form of conjunctive queries that can be answered is defined as follows

Q[A] =?A : ∃V1, ..., Vm.e1 ∧ ... ∧ en

where ei = p(c, V ), with V ∈ {A, V1, ..., Vm}, c ∈ E , p ∈ R
or ei = p(V, V ′), with V, V ′ ∈ {A, V1, ..., Vm}, V ̸= V ′, p ∈ R

(2)
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where A is the target node of the query (the answer), V1, ..., Vm are the bound
variable nodes, and c ∈ E represent the input anchor nodes. Each ei denotes an
atomic proposition, with either one (p(c, V )) or two (p(V, V ′)) variable nodes.
The goal is to find an answer set of entities a ∈ E for which Q[a] holds. The
bound variable nodes and target node are hereafter collectively referred to as
variable nodes.

A pre-trained link predictor is used to calculate the plausibility of each atomic
proposition. Recall that link predictors take embeddings as arguments, so the
vector representations of c, p and Vi are used. c and p use the embedding learned
during training on link prediction, but Vi is an unknown variable node, so it either
initialized with a random embedding and optimized (continuous CQD) or filled
with the embedding of different combinations of entities (discrete CQD).

Equation 3 expands upon equation 2, introducing the optimization task, link
prediction, and t-norm.

argmax
A,V1,...,Vm∈E

e1⊤...⊤en

where ei = ϕ(ec, rp, eV ), with V ∈ {A, V1, ..., Vm}, c ∈ E , p ∈ R
or ei = ϕ(eV , rp, e

′
V ), with V, V ′ ∈ {A, V1, ..., Vm}, p ∈ R

(3)

ϕ(es, rp, eo) is the link prediction score for atomic proposition p(s, o). ⊤ de-
notes t-norm - a fuzzy logic generalization of conjunction in propositional logic
with various implementations, including Gödel t-norm (⊤min(x, y) = min{x, y} ∈
[0, 1]) and product t-norm (⊤prod(x, y) = x · y). The t-norms aggregate the indi-
vidual link prediction scores into an overall score for a given query and candidate
answer. Finally, the embeddings for the variable nodes (eV ) that maximizes the
query score are found.

3.2 Continuous Optimization

In continuous optimization (CQD-CO), the variable embedding representations
are optimized directly without any correspondence to or mapping from any
known entities. That is, the optimization task is equivalent to equation 3 but
with the following as the argmax.

argmax
eA,eV1

,...,eVm∈E
(4)

Continuous Optimization can be performed with any gradient-based opti-
mization method such as gradient descent or Adam. When the optimal variable
embeddings eA, eV1

, ..., eVm
have been identified, every entity in the KG is scored

as a candidate answer, i.e. eA is replaced with et ∈ RHe once for every t ∈ E .
The query score is calculated with this substitution and the t substitution with
the highest query score is returned as the answer.
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3.3 Combinatorial Optimization

In combinatorial optimization (CQD-Beam) a set of variable substitutions S =
{A ← a, V1 ← v1, ..., Vn ← vn} with a, v1, ..., vn ∈ E that maximizes the query
score (equation 3) is found by means of a greedy algorithm that finds the top k
best variable substitutions for each atomic query. Starting with atoms in the form
p(c, V ), the link prediction score is calculated for every substitution of V with
entity t ∈ E : ϕ(ec, rr, et). The top-k scoring substitutions t are retained. Next,
atoms in the form p(V ′, V ) are handled, where V ′ is a variable node for which
a set of variable-to-entity substitutions has been found. For each substitution of
V ′, p(t, V ), we find k substitutions for V by the same process. We end up with km

combinations of variable-to-entity substitutions, where m is the number of edges
in the query graph. The combination of variable substitutions that maximizes
the query score is calculated. This contains both the answer to the query and
intermediate variable assignments as well as several potential other assignments.
This feature makes CQD-Beam explainable, which can be useful in many cases.

4 BioKG

BioKG [2] is a biomedical knowledge base generated from highly reputable,
expert-curated open biological databases, including DrugBank [16], UniProt [15]
and Gene Ontology [14]. The main biological entities in BioKG are drugs (DR),
proteins (PR), pathways (PA), genetic disorders (GD), and diseases (DS) and
the relations between these comprise the main relations, e.g. drug-protein inter-
actions (DPIs), protein-protein interactions (PPIs), and protein/drug/disease
pathways. There are some additional entities and relations which are subtypes.
For example, enzymes are types of proteins, and drug transporters and drug
carriers are types of DPIs. Figure 2 shows the schema of BioKG.

BioKG was developed to address the lack of high quality, unified biomedical
knowledge graphs. Most open biological datasets cover a specific domain such as
gene ontologies or drug development. Researchers often had to construct custom
biomedical knowledge graphs from the available open-source databases. How-
ever, this process was often carried out inconsistently across efforts and some-
times low quality datasets were used. BioKG aims to make relational learning
on biomedical data more standardized and reproducible. [2]

5 Experiments

5.1 Dataset and Query Sampling

BioKG consists of 2,067,997 triples, 105,524 unique entities and 17 relation types.
The dataset was split into a training-, validation-, and test set in the ratio
0.70/0.10/0.20.

For the complex query answering task, queries were sampled using an open
source Graph Query Sampler1, which uses the RDF query language SPARQL to

1 https://github.com/miselico/graph query sampler
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Fig. 2: BioKG Shema

generate queries and answers for different query structures (specifically 1p, 2p, ip,
and pi in these experiments). The dataset generated by this process was also split
into a training set, validation set, and test set. (Only one-hop queries are included
in the training set, while the remaining sets contain queries of all types). One-
hop queries are sampled only from triples present in the corresponding initial
train/test/validation split, so each split generated by the query sampler is equal
to or a subset of the initial corresponding split. The remaining complex query
types were sampled from the entire KG, irrespective of splits. As a consequence,
some answers are trivial since they can be answered only using triples present
in the training set. Only the hard answers, which require the link predictor to
correctly predict one or more unseen edges, are counted for evaluating the model.

Entities with high in-degree (i.e. with many incoming connections) can present
a problem for representative query sampling as a small number of entities might
be vastly overrepresented as the answer to queries, thereby enabling query an-
swering methods to achieve good Hits@K results by simply guessing the top K
most frequent answers every time. For example, in BioKG the highest observed
in-degree is 2872. For the 2i pattern,

(
2872
2

)
= 4122 756 different queries can be

generated with that entity as the answer. For query types that do not include
intersection the effect is similar, but less extreme. It has been proposed [10] to
remove entities with an in-degree above a certain threshold as a solution to this
problem. For these experiments, the in-degree threshold was set at 50 for the
complex query types (i.e. not including one-hop) which removed 5993 entities,
around 5% of the total. A crude model was created that always predicts the
top 10 most frequent answers (calculated separately per query type and after
entities above the in-degree threshold were removed) in descending order of fre-
quency. Table 1 shows the results of applying this model to BioKG. The poor
performance shows that the dataset does not have the mentioned problem af-
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ter removing high in-degree entities. This table can also be seen as a kind of
benchmark because any model can achieve roughly these results by overfitting
to the most frequent answers. Performance that exceeds this benchmark reflects
genuine model performance.

Query Structure Hits@1 Hits@3 Hits@10

1p 0.69% 0.95% 4.14%

2p 0.01% 0.12% 0.29%

2i 0.09% 0.26% 0.74%

ip 0.06% 0.14% 0.63%

Table 1: Hits@K for model which always guesses the top ten most frequent
answers

5.2 Model details

The link predictor was trained with ComplEx using a variational approximation
of the nuclear tensor p-norm for regularization. The learning rate was fixed at
0.1, batch size at 200, and the Adagrad optimizer was used. Grid search was
performed for hyperparameter optimization (HPO) with the following hyper-
paramters and values: embedding dimension in {100, 200, 500} and regulariza-
tion coefficient in {0.1, 0.01, 0.001}. The best performance was achieved with
embedding dimension 500 and regularization coefficient 0.01.

For CQD-CO, variable and target embeddings were optimized with the Adam
optimizer with an initial learning rate of 0.1 and a maximum of 1,000 iter-
ations. For CQD-Beam, the optimal beam size was searched in the set k ∈
{16, 32, ..., 128}. In addition, for both types of CQD, two variations of t-norm -
Gödel and product t-norm - were tested. Table 2 shows the best configuration
that was found per query type.

Query Type CQD Type T-Norm K Hits@10

2p CO Gödel N/A 25.08%

2i Beam Product 16∼128 66.72%

ip Beam Product 64∼128 31.07%

Table 2: Configuration with best query answering performance found in grid
search. Different values of K within the range indicated in the table resulted in
negligible changes < 0.05% in all performance metrics. The reported result uses
the highest K in the range.
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5.3 Evaluation

For each query in the test set, every entity in the KG is scored as a possible
answer and this list is sorted decreasingly by score. An entity’s rank is its position
in this list. Moreover, the filtered setting [3] will be used, whereby other true
answers do not affect the ranking of an entity. So, if three correct entities occupy
the top three positions in the list, their filtered ranks are all 1. The filtered setting
is important for the trivial answers which are not included in the calculation of
performance metrics. If it were not for the filtered settings, trivial answers would
often outrank hard answers and thereby reduce the measured performance.

Given Q as the set of filtered ranks for all ground-truth correct answers, the
performance metric reported in the results is defined as follows.

Hits@K measures the proportion of model predictions that are among the top
K highest ranked. Typically k = {1, 3, 10} are used.

Hits@k =
|{q ∈ Q : q < k}|

|Q|
(5)

6 Results

The results of complex query answering are shown in table 3. The performance
metrics are shown for the best model achieved per query type and CQD method.

Method Avg 1p 2p 2i ip

Hits@1

CQD-CO 23.60% 43.34% 13.08% 27.28% 10.72%

CQD-Beam 23.53% 43.34% 8.64% 29.27% 12.88%

Hits@3

CQD-CO 33.67% 54.97% 18.42% 44.02% 17.27%

CQD-Beam 34.50% 54.97% 13.95% 48.44% 20.63%

Hits@10

CQD-CO 44.06% 65.91% 25.08% 59.13% 26.02%

CQD-Beam 46.41% 65.91% 21.95% 66.72% 31.07%

Table 3: CQD complex query answering results by query type and CQD varia-
tion.

In table 4 the query answering performance is compared between BioKG and
the three benchmark datasets evaluated in the paper that introduced the CQD
framework [1]. The cells contain the highest Hits@3 achieved per query type and
dataset with either CQD-CO or CQD-Beam. CQD on BioKG performed slightly
worse on average than on NELL995 and slightly better than on FB15k-237.
Thus, despite the fundamental differences between these benchmark datasets
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Dataset Avg 1p 2p 2i ip

FB15k 71.70% 91.80% 77.90% 79.60% 37.50%

FB15k-237 32.45% 51.20% 28.80% 35.20% 14.60%

NELL995 40.58% 66.70% 35.00% 41.00% 19.60%

BioKG 35.60% 54.90% 18.42% 48.44% 20.63%

Table 4: CQD complex query answering results by query type and CQD varia-
tion.

and BioKG mentioned in the introduction, CQD achieved similar performance
on BioKG as with two out of the three benchmark datasets.

Query answering may be trained on heterogenous KGs, but in practice some-
one might be interested in predicting a small number of relationship types for a
specific use case. Therefore, looking at the performance broken down by what re-
lation types are involved in the query atoms can be enlightening. Another reason
why this breakdown might be interesting is that the test queries were generated
automatically, without taking into consideration what types of queries are real-
istic and interesting to ask.

Table 3 shows the query answering performance broken down by the type of
the last atom’s predicate, i.e. the triple with the target entity that is ultimately
being predicted. 2i queries are not included since they do not have a single last
atom, but two atoms with the target entity as the tail. The y-axis shows the
Hits@10 performance as a ratio compared to the Hits@10 for that query type
in general. The table shows that ip queries are relatively invariant to the last
atom’s predicate. 2p queries have more variation in this respect, and are not
good at predicting drug-protein interactions and drug-drug interactions, which
are the relevant relationships for drug target and drug interaction identification.

In figures 4a and 4b the relative performance of queries are broken down by
the predicate of the first atom and the predicate of the second atom. Figure 4a
shows this data for 2p queries and Figure 4b for 2i queries. The shade indicates
the relative Hits@10 performance of queries with the given predicate types as a
ratio compared to the Hits@10 for the query type in general.

The main insight from these figures is that the combination of predicate types
the query consists of matters to a moderate degree. This can be seen from the
degree of variation in the shade of cells in the same row. The most pronounced
example is rows 5 and 6 in 4a. The model is good at predicting disease-genetic
disorder (DS-GD) and disease-pathway (DS-PA) relationships when the first
atom’s predicate is a protein-disease (PR-DS) relationship, but not when it is a
drug-disease (DR-DS) relationship.

A domain expert could interpret these figures in more detail and perhaps
evaluate the query answering performance based on the importance or relevance
of different queries.
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Fig. 3: Relative Hits@10 of complex queries by query type and the predicate of
the last atom

(a) Query type = 2p (b) Query type = 2i

Fig. 4: Relative Hits@10 of complex queries by query type and the predicates of
the first and second atom

7 Limitations

A recent paper [6] investigates the performace of several link prediction mod-
els on two biomedical KGs, including BioKG. Thousands of experiments were
performed to investigate the effect different choices regarding training setup,
hyperparameters, and other configuration settings have on performance. They
found that ComplEx achieved a Hits@10 score of only 1.2% with optimal hy-
perparameters on BioKG. Their findings call into question the results reported
in this paper. The most likely cause of the discrepancy is a flaw in this paper.
Many attempts were made to track down the cause of the discrepancy without
success, but the query sampler is a more likely source than the query answering
codebase, as the former is more of a work in progress and less tested.
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Another limitation is that only 3 complex query structures were tested, com-
pared to the 8 tested in the original CQD paper. This is an obvious improvement
to include in future work.

Finally, the depth of analysis of the results is limited by a lack of domain
expertise. Future work could be multidisciplinary to solve this limitation.

8 Conclusion

Complex query answering was performed with the CQD framework on the
BioKG knowledge graph. The accuracy was quite high and comparable to two of
the benchmark that CQD has been tested on previously. The BioKG dataset has
some fundamental differences than those datasets, so this strong result provides
further evidence for the effectiveness of CQD. However, further analysis showed
that the performance varied significantly depending on the relationships being
predicted in the queries. This suggests that one should not assume the overall
performance scores reflect the performance for specific focused use cases. Finally,
the results from a different paper using the same model and dataset cast doubts
on these results. However, if the results are correct they demonstrate strong
potential for CQD to be applied to the biomedical domain, which has positive
implications for drug development since complex query answering is so flexible.
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